Relational Operator Examples

Consider the following tables with three attributes:

R

L	D	C
A	3	r
В	1	b
С	2	g

9

<u>s</u>		
L	D	C
C	3	y
D	1	b
C	2	g

The Primitive Operators

A selection will (potentially) reduce the number of rows. Thus the following selection operation: $\sigma_{D>1}(R)$ will produce the following table:

L	D	C
A	3	r
C	2	g

A projection will eliminate columns: $\pi_{C,D}(R)$ will produce: $C \mid D$

C	D
r	3
b	1
g	2

A cartesian product of R×S will produce:

L	D	\boldsymbol{C}	L'	D'	C'
A	3	r	C	3	y
В	1	b	C	3	у
A B C A B C A	2	g	C C	3	y
A	3	r	D	1	b
В	1	b	D	1	b
C	2	g	D	1	b
A	3	r	C	2	g
B C	1	b	C C	2	g
C	2	g	С	2	g

The last three columns must be renamed to avoid duplicate attribute names.

A set union $R \cup S$ will produce:

L	D	C
A	3	r
В	1	b
C	2	g
C	3	у
D	1	b

A set intersection $R \cap S$ will produce:

L	D	C
C	2	g

A set difference R-S will produce:

L	D	C
A	3	r
В	1	b

The difference is not symmetric so the difference S-R is different:

L	D	C
C	3	У
D	1	b

The Composite Operators

Since these two relations have exactly the same attributes in their schemas a join could occur on any column. First an equijoin on the L attribute, $R\bowtie_{R.L=S.L}S$ gives:

L	D	C	D'	C'
С	2	g	3	у
C	2	g	2	g

Next a equijoin on the D attribute, $R\bowtie_{R.D=S.D}S$ gives:

L	D	\boldsymbol{C}	L'	C'
A	3	R	C	y
В	1	В	D	b
C	2	G	C	g

Next a equijoin on the C attribute, $R\bowtie_{R.C=S.C}S$ gives:

		1 J		
L	D	C	L'	D'
В	1	В	D	1
C	2	G	C	2

The division is one of the least used and it needs its own set of relations.

\mathbf{n}
ĸ

1.		
L	D	C
A	3	R
A	5	R
В	1	В
В	3	В
В	3	R
С	2	G

S1

C

g a

<u>S2</u>

r

R/S1 will be:

L	D
٨	2

A 3

B 3

R/S2 will be:

L	D
D	2