
Knowledge Building Using Visualizations
Vijayakumar

Shanmugasundaram
Department of Math and CS

Concordia College
Moorhead, MN, USA

218-299-3343

shanmuga@cord.edu

Paul Juell
Department of CS and Operations

Research
North Dakota State University

Fargo, ND, USA
701-231-8906

paul.juell@ndsu.edu

Curt Hill
Department of Mathematics
Valley City State University

Valley City
ND, USA

701 845-7103

curt.hill@vcsu.edu

ABSTRACT
In this paper, we describe our efforts in knowledge building by
creating visualizations. Our efforts include problem-based
learning. We have identified a problem that the students have in
learning OOP. To solve that problem we engage our students in
the classroom using existing visualizations created by students of
the earlier class, then we have the currents students improve the
existing visualizations, or create new visualizations for future use
in the same class. We describe the process of building knowledge,
problem based learning, the details of the visualizations, our
observations and the merits of this approach.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords
CS educational research, knowledge, visualizations, OOP.

1. INTRODUCTION
Knowledge building is a process of producing and continually
improving valuable ideas to a community, through ways that raise
the possibility of community accomplishment being greater than
the total individual contributions and part of broader cultural
efforts [7]. Many organizations participate in progressive
knowledge building [2]. Educational organizations show interest
in promoting knowledge building among learners. However,
knowledge building can be difficult to introduce in classrooms,
especially in an introductory programming class. The main reason
is that courses often engage students in contrived programming
assignments that are mainly as exercise language features. These
artificial assignments provide no value in terms of communal
knowledge advancement.

We have students in an introductory programming language class
actively engage in knowledge building by teaching them with the
knowledge (visualizations) built by a previous class, by giving
problem based learning programming assignments which will
help them to refine the already built knowledge (visualizations)
and to build new knowledge (new visualizations) for future use in
the same class [5].

2. BUILDING KNOWLEDGE PROCESS
Teaching introductory object oriented programming with the help
of conceptual diagrams, UML diagrams [1], and memory
diagrams motivate and help students to learn object oriented
programming [6, 8]. We initially created visualizations to help the
students learn OOP. For the last three years these have been used
in teaching an introductory programming class in Java at
Concordia College. This introductory programming class is one
credit course out of 32 credits required to graduate with classes
meeting every week MWF for 1 hr 10 minutes. The building
knowledge process includes the instructor initially creating
visualizations and using them in the classroom, then requiring
students to create visualizations as final projects for this
introductory programming class. We also allow them to refine the
existing visualizations for use in future classes.
Throughout the semester, the concepts are taught with the help of
diagrams. In the beginning of the semester the students are
informed that they need to choose a concept in the course and
create visualizations for their concepts in teams of two. We
steadily prepare them towards that end by continually teaching
them with the aid of visualizations, and having the students create
diagrams (UML diagrams or memory diagrams) in a word-
processor, and then display them on their web pages as part of
their assignments. Initially they do not have enough background
to create a diagram of their own in Java, but after applets are
covered they do. Then the students create a class diagram, using
applets and display this diagram on their web pages. Just one
month before the end of the semester, they are given a
programming assignment in event handling and again have them
draw a memory diagram using an applet. This applet will have
text fields, buttons to collect the name of the class, object
variable, instance field. After collecting the data from the user,
clicking on the button will show a memory diagram. Again the
students need to display this applet on their web pages. This
particular assignment becomes a good starting point for their final
visualization project. The students have the option to choose the
type of diagram that they want to create from the following: Class
diagram, Memory diagram, or Conceptual diagram. They may
also choose to improve an existing visualization with better user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

interfaces. The students need to complete this final project in only
two class periods. However, they have been prepared to this end
from the beginning. This final project is 20 % of the grade.
During this time, we have been building and refining knowledge
and improving the instruction of the course. The students have
built enough visualizations for each concept. Therefore we only
use student created visualizations in our classroom. Next will be
discussed some of the interesting visualizations that the students
have made, refined, and used as well as the importance of these
visualizations as teaching tools, and why and how they are used in
the classroom.

3. DETAILS OF VISUALIZATIONS

3.1 Interfaces
An interface is a collection of operations that specifies the
services of a class or component. It describes the externally
visible behavior of that element. It defines a set of operation
specifications (that is, their signatures) but never a set of
operation implementations. It rarely stands alone, rather, it is
typically attached to the class or component that realizes the
interface. Graphically, an interface is rendered as a circle. An
interface is also rendered as a class diagram with a slight change
in the notation. Consider the UML interface diagram shown in
Figure 1.

Figure1. UML Interface diagram

Employee is a class that realizes the IMeasurable interface, which
is rendered as a circle. In the alternate representation, the interface
is represented as a class diagram with a slight change in the
notation - the name of the interface is within angle brackets. This
IMeasurable interface has a getMeasure method. The relationship
between class and the interface is represented by the realization
symbol. This UML representation shows the external view,
internal view of the interface, and its relationship to a class, which
realizes it. These diagrams are used to teach the concept of an
interface to the students.
The students identified that this UML diagram does not show why
an interface is needed in the first place, and suggested that in
order to explain the necessity of an interface the conceptual

diagram is required. Interfaces reduce the coupling between
classes, promote reuse, and ease the changes being made with the
classes that realize an interface and the classes that depend on the
interface. Consider the following conceptual diagram involving
an SUV, a trailer, a boat, and snowmobile drawn by a team of two
students as shown in Figure 2.

Figure 2. Conceptual diagram to teach an interface
The SUV depends on the trailer to carry either the boat or the
snow mobile (dependent relationship). Both the boat and snow
mobile have provisions for being placed and fixed on the trailer
(Realization relationship). If the trailer is not there, every time the
SUV needs to tow either a boat or snowmobile, it has to change to
an appropriate coupling. But with the help of trailer, without
changing its coupling, it can carry either the boat and the snow
mobile as long as the boat and snow mobile has the provision to
be fixed on the trailer. More over any alterations can be easily
made to SUV, boat, snow mobile, and the trailer as long as the
relationships are maintained. An interface cannot stand alone like
this trailer, which cannot travel on its own. With the help of this
diagram, the students clearly explained the concept of an
interface. The mapping of the classes involved and the interface
with the SUV, boat, snow mobile, and trailer enhances the
understanding of the concept of the interface.

3.2 Polymorphism
Polymorphism is the ability for different classes of objects to
interpret the same message differently. Objects are responsible for
interpreting the messages sent to them. Dynamic binding
facilitates polymorphism. This allows the developer to let the
system decide which method should be called on what object,
thereby avoiding the writing of complicated decision logic. The
facility that makes a developer’s job easier, makes the student’s
job of understanding polymorphism more difficult. We taught
polymorphism by creating an UML class diagram showing the
relationship between two classes, one interface, and another class
given in the textbook [3] we used as shown in figure 3. We tried
to explain how a method specification provided in the interface is
implemented in the first two classes that realize the interface
differently. Testing the class that uses the third class is
complicated by the dependence on the interface for a method with
same name and signature. This same method acts differently

depending on the objects of the two classes that realize the
interface. Explaining this situation to students in just words can be
quite vexing. It is difficult to provide a conceptual diagram for a
BankAccount class, Coin class, Mesurable interface and DataSet
class to explain Polymorphism. There this visualization shown in
Figure 3 is used as well as for explaining upcasting and
downcasting.

Figure 3. A class diagram to teach polymorphism

This becomes easier to understand when given a simple example
that relies upon their common knowledge. The students
suggestion is to simulate a program for different animals shouting.
Sending the “shout” message to a cow object, a pig object, or a
duck object produces different results although the message is the
same. This visualization is shown in figure 4. The students who
created this visualization combined all levels of knowledge at the
conceptual level, code level, and memory level. Initially they
were interested only in creating the visualization at the conceptual
level, but it was suggested that to connect it at all levels would
greatly increase its value. The students then created the
visualization combining all levels of knowledge.

Figure 4. Conceptual diagram to teach polymorphism

3.3 Operator Overloading
Another problematic concept is function name and operator
overloading. This is often combined with an explanation of the
difference between early and late binding. This has been done
without any diagrams. Our students created a visualization to
explain operator overloading by combining the explanation at all
levels as shown in the figure 5.

Figure 5. A conceptual diagram to teach operator
overloading.

The students created three different methods with the same name
“makeRobotAct” with three different parameters. First method to
make the robot walk, second method to make the robot walk and
dance, third method to make the robot walk, dance, and surf.
While this visualization clearly explains the method
overloading/operator overloading, there is still a need to come up
with another visualization to explain the difference between early
binding and late binding.

There are many other equally useful visualizations that must be
omitted for want of space. The interested reader should consult
the web site [9]. We want to highlight some interesting
observations we made during the time when the students were
creating visualizations.

4. OUR OBSERVATIONS
The students showed more interest in developing a conceptual
diagram without making a connection to the lines of code as
shown in Figure 6.

Figure 6. A conceptual diagram to teach coupling

They need to be encouraged to create visualizations by making a
connection between the diagrams and the lines of code. We
pointed out the students’ difficulties in converting the concepts to
code as the main reason that they need to make the connection
between the lines of code and the diagrams in the visualizations.

They also try to put more emphases on their visualization as
shown in Figure 7 especially when it comes to a particular point
where it is more abstract such as listener in Event Handling. The
students don’t have difficulty in understanding the code that
creates a window frame or a button being added to the window.
But the students have difficulty in understanding the workings of
a listener, which can be seen by the ear listening picture in the
visualization.

Figure 7. A conceptual diagram to teach event handling

It is interesting to note that the students always add some element
of humor in their visualizations as shown in figure 8.

Figure 8. A conceptual diagram to teach while loop

It is important to note that the students try to identify the
important concepts to something concrete in the real world. For
example, to explain a while loop with a guarded command, the
students identify the condition in the while loop to a lock. The
visualization shows as long as the cage door is locked, the
monkey will be inside. Once the door is unlocked, the monkey
will be released. This visualization clearly explains the guarded
commands with a concrete example.

The first author also routinely uses the visualization as a reference
in his recommendation letter to future employer of the students.
These visualizations are the living example of the student’s
capacity in the course. The students are passionate about creating
the visualization. This is mainly because that they think that they
are trying to solve their own problems. For example, in one class,
the discussion went about trying to compare the iterative
implementation and recursive implementation of the same
problem. The instructor attempted to explain this, but one of the
students who was looking for a concept to visualize was initially
unable to understand the difference between these two
implementations. At the end of the class discussion, the concerned
student took this concept as a theme for his visualization.

It is very unfortunate that the students creating these
visualizations do not realize the importance of providing narrative
comments as par of the visualizations. Narrative comments
included in the visualizations can improve the efficiency of
visualization. While many students after our suggestion
understood the importance of narrative comments and wanted to
implement it. This forced us to explain to them about threads and
concurrency control in the programs to provide the appropriate
narrative comments at the right time. Only a few students
ventured on their own to use threads in the visualization for
including the appropriate narrative comments at the right time as
show in figure 9. This visualization explains the execution of a
program with exception handling code in it using appropriate
running commentary about the program being executed.

Figure 9. A diagram with narrative comments

Most of the students want to create their own visualization from
scratch. For some reason they hesitate to select the visualization
created by another student in the earlier class and make

improvements on it. Students need to be encouraged to take an
existing visualization and make improvements, since this will be a
useful skill when need to modify existing software.

Another interesting observation is that the students were resistant
when they start their visualization project, but once they started,
then it was very hard to stop them as they get more ideas and
want to implement all these ideas.

In one of the parent/faculty meeting, one parent of the student had
approached the first author and said that he is proud of the
visualization his son created for this class. This parent printed and
made a frame of the visualization and kept it next to the drawing
his son made in his kindergarten class.

5. MERITS OF THIS APPROACH
Implementing knowledge building in an introductory
programming course is difficult. However, with careful planning
and student preparation, it becomes possible and beneficial. The
typical contrived assignments are not helpful. Instead they
concentrate on making the students to go through the process of
writing the code and not on the process of making them
understand the concept. The aim for the students with the typical
assignments is to get a grade, whereas this type of project
promotes the understanding of the concept. The majority of the
made up assignments are graded, handed back to the students, and
forgotten before the end of the semester. These visualization
projects tend to have a longer lifespan. They remain on the web
for the next set of students [9] and are used by students and
instructors from other institutions as well. Our visualizations
indicate what the students do not fully understood about a
concept. The retention of the visualizations discourages cheating
attempts by the students, as they know that their final project is
going to be on display for some time.

6. FUTURE WORK
We intend to determine the significance of this approach by
conducting a more rigorous experiment with an experimental and
control group. We will continue to engage our students in future
classes to refine the existing visualizations.
We have identified a number of problems associated with
teaching the CS Introductory programming course in Java. The
students do not have enough tools to master the concepts by
practicing them. For example, we may require the students to do
one or two assignments to create a class program, or to write a
recursive method. But doing these assignments once does not
reinforce the process of creating a class program or recursive
method. Hence, we are planning to have students build expert
systems. These expert systems would guide the students with
various steps involved in creating a class program, or a recursive
method. These also would be used by the future students to
practice and master the process of creating similar programs.
Moreover, the Java Task Force [4] identified a number of
problems associated with teaching introductory programming
course in Java. We plan to have our students in the future class to
solve them one by one and build a knowledge system that can
help the students to properly learn the programming concepts and
practice.

7. CONCLUSIONS
We identified the problem that students have in learning OOP. To
solve this problem we use visualizations to teach the concepts.
Then we engage our students to use existing visualizations created
by students of the earlier class, and have them improve the
existing visualizations, or create new visualizations for future use
in the same class.

8. ACKNOWLEDGMENTS
Our thanks go out to many students of Concordia College who
have contributed to this project.

9. REFERENCES
[1] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified

Modeling Language User Guide. Addison Weisely. 1999.
[2] Hewitt, J. From a focus on tasks to a focus on

understanding: The cultural transformation of a Toronto
classroom. In T. Koschmann, R. Hall, & N. Miyake (Eds.)
Computer Supported Cooperative Learning Volume 2:
Carrying forward the conversation (pp. 11-41). Mahwah,
New Jersey: Lawrence Erlbaum Associates.

[3] Horstmann, Cay. Java Concepts, 4th ed. John Wiley, New
York, NY, 2006.

[4] Java Task Force Report. http://www-cs-
faculty.stanford.edu/%7Eeroberts//java/java-problem-
taxonomy.html, Date accessed on 12-20-2005.

[5] Juell, P., & Shanmugasundaram, V. Learning Object
Oriented Programming By Creating Visualizations. The 19th
International Conference on Computers and Their
Applications (Sponsored by the International Society for
Computers and Their Applications (ISCA)), Red Lion Hotel
on Fifth Avenue, Seattle, Washington USA. March 18-20,
2004.

[6] Juell, P., Shanmugasundaram, V., & Denton, A.
Effectiveness of Visualizations for Student Use. IED-MEDIA
2003-World Conference on Educational Multimedia,
Hypermedia & Telecommunications, Association for the
Advancement of Computing in Education (AACE).
Honolulu, Hawaii, USA.

[7] Scardamalia, M., & Bereiter, C. Knowledge building. In
Encyclopedia of Education (2nd ed., pp. 1370-1373). New
York: Macmillan Reference, USA.

[8] Shanmugasundaram, V., Juell, P., Jayasuriya, N., and
Benson, J. Development of ViewJ - a Visualization Builder
for Object Oriented Programming Development
Environment, IED-MEDIA 2004-World Conference on
Educational Multimedia, Hypermedia &
Telecommunications, Association for the Advancement of
Computing in Education (AACE), Lugano, Switzerland,
June 21-26, 2004.

[9] Visualizations web site.
http://www.cord.edu/faculty/shanmuga/ Date accessed 12-
20-2005.

