

A Visualization Enhanced Hypertextbook for Computer Science Education

Curt Hill
Department of Mathematics and Computer Science

Valley City State University
Valley City, ND, USA

Curt.Hill@vcsu.edu

Brian Slator
Department of Computer Science

North Dakota State University
Fargo, ND, USA

slator@cs.ndsu.edu

ABSTRACT
An online system is described that has been used for fully
online instruction as well as a supplement for face to face
courses. The student uses a web browser as the interface.
The system was originally described as the Virtual
Textbook, but its capabilities have increased to include
delivering interactive educational experiences, monitoring
student progress and giving individual assignments.
It has many of the features of a Learning Management
System as well as additional features. Unlike an LMS,
much of its behaviour may be altered with programming.
It is also freely available under the GNU GPL.

KEY WORDS
Online learning, Computer Science education.

1. Introduction

A MOO Education Platform (MEP) is an object-oriented,
Visualization Enhanced Hypertextbook[1] that has been
shown to be suitable for online instruction as well as
augmenting classroom instruction. A MEP may deliver
content, record student progress, give surveys, tests or
quizzes, record the scores and give assignments based
upon the lesson material a student has completed.
The MEP is based upon common off-the-shelf software,
such as a MOO[2] server, web server and client software.
The flexibility of the MEP is derived from the
programmability of the objects within the system.
Since a MEP is object-oriented this paper will examine
some of the important objects in a top-down approach.

2. Important Objects of a MEP

The organization of a MEP resembles many other
educational endeavours. At the very highest level there is
a course, which is populated by students, taught by an
instructor and there are agents which provide assistance
for the students. Clearly, the instructor and students are
real people who login to the system using client software.

The instructor owns the course. This ownership allows the
instructor to determine the lessons that are to be taught,
the assignments to be given, the tests to be taken, among
other things. The instructor connects to the system and is
represented by an instructor object.
Like everything in a MOO, the course is another object. It
references the instructor that owns the course, the student
objects that are enrolled in the course, the lessons that
make up the content, a grade book, as well as any other
necessary objects.
An instructor may own several courses and each one is
open or closed. An open course is still being used and
each student in the course is linked to the course. When a
course is closed, the student object continues to exist but
the connection to the course is absent. A closed course
may be retained indefinitely as a record of the lessons and
students involved in it.
A course is largely a collection of lessons that a student
must complete. A lesson is a collection of educational
opportunities and contains requirements that a student
must satisfy in order to complete the lesson. A course has
a list of lessons, so there is a strongly implied order of
how the lessons are to be completed. However, the
student does have some freedom to complete the lessons
in different order.
A MOO (the acronym is MUD Object Oriented) has an
inherent room and exit model characteristic of the
dungeon and dragon type of game from which it was
derived. In the MEP a room is also known as an exhibit.
The client used on a MEP displays the exhibit in a way
similar to a web page, with some small differences. The
exits are shown as links in the bottom as are any other
objects present in the room. A display of an exhibit is
shown in Figure 1.
The course may have an optional gradebook object
attached. Scores from multiple choice test questions will
be automatically stored in this object. Scores from any
type of question, such as an essay, that requires manual
intervention may also be entered manually. Lesson
completion may also trigger an automatic grade update

and this may be decreased if the completion does not
occur prior to a lesson-specific date.

Figure 1. Entry into a lesson room

The illustration in Figure 1 shows a client display of an
exhibit. There are several buttons for common commands
on the top of the browser window. On the upper left pane
are messages sent by the MOO. Commands may be typed
into the lower left pane, although students rarely type in
commands. The right hand pane is the HTML display.
This is where most content is displayed. The icons on the
bottom of this pane are adjacent rooms that may be
viewed. If any other people or any interactive objects
were present in this room their icons would be shown at
the bottom as well.
2.1 Lessons
There are several types of room and the lesson is just one
of these. A room displays a modest amount of text and
graphics. The room display is just displayed HTML. A
lesson room is usually the entryway to a collection of
other rooms of related topics.
Each lesson has a set of requirements to be satisfied.
There are a several items that could be required. The
simplest is the visitation of a room. There is no guarantee
that a student understood the content displayed in a room,
but the system records that this student visited the room,
so that it may be a requirement.
Lessons may also be hierarchically arranged. A high level
lesson may require the completion of a lower level lesson
and any of these lower level lessons may require others as
well. If an instructor wants the student to be orderly in the
perusal of the course lessons, each lesson may require
completion of the prior lesson.
There are also a number of interactive objects that may be
required as part of a lesson. Most of these are Java applets
that appear in another tab or window of the browser.
Several of these will be discussed later.
A lesson may have several sets of requirements. If a
student completes any set, this constitutes completing the
lesson. The completion of a set of requirements is to
satisfy each requirement of the set. These sets may have
overlapping requirements but only one of the sets needs to
be satisfied.
Each lesson room has a default set of requirements and
these are what are generally used. However, two
instructors may disagree as to what constitutes proper
lesson requirements. The instructor may then put

alternative requirements on this lesson. These apply only
to the course that this instructor teaches.
If a student is about to leave a lesson – that is to move
from any room in the lesson to any room outside the
lesson – the system checks the progress towards satisfying
the lesson. If all that is lacking is the visitation of simple
rooms, a quiz may be offered. An agent appears before
the student, tells the student that they have not completed
the lesson and offers the opportunity to take a quiz to
show mastery. If the student accepts they are transported
to an otherwise inaccessible room and a lesson quiz is
generated.
Each lesson quiz contains five multiple choice questions.
They are culled from the unvisited, but required rooms,
then are randomly selected and ordered, as well as the
multiple choice answers randomly arranged. The quiz
questions and answers are attached to the room object, but
they are never shown to a student viewing the room. If the
student answers at least four of the five correctly, the
lesson is completed. When the quiz is complete the
student is given the results and then transported to
whichever room was originally intended. If a student
misses a question the correct answer is shown. To prevent
question depletion, a student who fails a lesson quiz twice
will not be offered the quiz option for that lesson again.
Moreover, if there are insufficient prepared questions
attached to the rooms the quiz will also not be offered.
2.2 The Student Experience
The process for a student is simple. A Java enabled
browser is directed towards the system. The student
provides a login and password so that the system can
activate the correct student object and connect it. The
student then meanders through the rooms reading the
content material. Unbeknownst to the student the system
is recording which exhibits are visited and which
interactive objects are used.
Should the student need to be refreshed as to what needs
to be done the @course command may be given. This
command will show every high-level lesson in any open
courses in which the student is enrolled. If the lesson has
been completed it will show that fact. The student finds
the first uncompleted lesson and begins work on that.
The first time a student enters a lesson room the lesson
will show the all the requirement sets present for that
exhibit. In Figure 1 the requirements are displayed at the
bottom of the upper left pane. If any of these are
complete, that is also stated. At any subsequent visit to
this room, the student may enter the @requirements
command (possibly abbreviated to @req) and an updated
list is displayed.
If a student knows from the @course command that a
particular lesson should be mastered, yet does not know
how to find the lesson, the lesson map may be of help.
The lesson map is a series of web pages outside of the
MEP system that is built by program. In it is the linked
name of each lesson. The link takes one to a lesson
description page. This page describes a lesson, including
the shortest path to the lesson, subordinate rooms,
subordinate lessons and links back to the lesson map and

a lesson index. A typical lesson page is shown in Figure
2.

Figure 2. A Lesson Description Page

2.3 Agents
There are a variety of agents that populate the system that
attempt to assist the student. The quiz agent has already
been mentioned, the roving goalie, lost and aimless agents
will now be discussed.
The roving goalie is an agent that is sent to a student,
once a goal has been achieved. As previously mentioned,
every time a student leaves a room within a lesson to
enter a room that is outside of the lesson, the progress
towards satisfying the requirements of the lesson will be
checked. If the requirements are not satisfied the student
might be offered a quiz. If they are complete the student
object is augmented with notification of lesson
completion, which in turn may be used in other lesson’s
requirements. High level lessons – those specifically
listed in the course object – may also have assignments
attached to them. When the lesson completion is attached
to the student object another object, the dispatcher, is also
notified. If this is one of those lessons with an assignment
a roving goalie is dispatched to visit the student.
The roving goalie appears in the exhibit in the same way
another person might appear. However, they tell the
student they have completed the lesson and that they now
have an assignment. Although the student will not
necessarily be aware of the fact, but an assignment object
has been connected to the student object. At any later time
the student may display the text of assignment. After the
roving goalie agent has greeted the student and described
the assignment, it will leave.
The roving goalie has a list of assignments, which it
processes in a round robin fashion. If there are more
assignments than students there will be no duplication.
However, even with fewer assignments than students the
likelihood of plagiarism is greatly reduced. Of course, the
instructor has access to which assignment was given to
which student. The roving goalie may give any type of
assignment. The assignment object contains text, but it
may reference web pages or any other type of material

that could be supplied through a web server. Since the
system has mostly been used in programming classes,
programming assignments are the most common type.
The name roving goalie is used because this agent is
derived from a (stationary) goalie. In early uses of the
system a goalie was placed in a room and the students had
to engage in a scavenger hunt to find it. When a student
did then the goalie gave them an assignment.
The lost agent has a completely different purpose.
Whenever a student passes through any lesson room, this
is noted. This event is then compared with the lesson list
from the course object. If the student is not within one of
his or her first two uncompleted lessons, the lost agent
concludes that the student is lost and seeks to help.
A MOO has a typically short horizon. All that may be
observed is the contents of the current exhibit as well as
the list of exits and the names of the room to which they
lead. A student who is classified by lost may have simply
forgot the path taken to this location or may be driven by
curiosity into areas not yet needed.
Once the lost agent classifies a student as lost, the agent
moves into the same room as the student and then offers
to help. If the student is actually lost they will be
transported into their first uncompleted lesson. On the
other hand if the student is just exploring the system, the
agent will exit the room and leave the student to continue
to explore. In addition, the agent will not bother the
student again for some time.
The aimless agent has a similar task to that of the lost
agent. Instead of a student moving in an un-required part
of the MEP the student is in one of the first two lessons
still needing completion. Despite moving around a lesson
that is needed, the student is not making progress towards
the goal of satisfying the lesson requirements. Like the
lost student this might or might not be a concern. The
student may be reviewing exhibits to clarify concepts and
understanding. It is also possible the student may not be
able to find what is needed to complete the lesson.
The aimless agent must keep track of all students’
progress towards their current goal. When the student is in
the correct lesson but not making progress, the aimless
agent moves in and offers to move the student to a better
location. This could be an exhibit that has not been
visited, a subordinate lesson that has not been completed
or a room that contains an interactive object that is
required to be used. The aimless agent also asks if
assistance is needed in a way similar to the lost agent.
2.4 Required Interactive Objects
Although agents are software objects sent to interact with
students, they are never part of the requirements of a
lesson. They are helpful but they give no course content
nor provide an educational experience. Instead there are
several objects able to provide experiences that will be
beneficial to the students. The generic one is the
MOOApplet, but the CodeApplet and Presentation are
common as well.
The MOOApplet consists of two objects, one inside the
MOO and one outside. One MOOApplet is an object
inside the MOO. This object is designed to start a Java

applet and then receive confirmation that the user of the
applet has done enough to receive credit for the exercise.
On the outside another object named MOOApplet is a
Java class, a descendent of the Java Applet class. The
intent of this pair of objects is to allow any useful Java
Applet to be converted into an applet that performs some
educationally desirable action and that the completion of
the applet can be recorded inside the MOO. Figure 2
shows a simplified computer simulator applet that has
been converted into a MOOApplet.
The procedure for conversion is generally much easier
than writing the applet itself. First a useful Java applet
with available source code needs to found or developed.
(In the former case the permission of the author should
also be obtained.) The applet source code then needs to be
modified in two different ways. It must be made a
descendent of MOOApplet, rather than Applet. The
MOOApplet ancestry provides the means to communicate
with the MOO and since a MOOApplet is in itself a
derivation of Applet, no capabilities are lost. The second
part is to determine what constitutes adequate use of the
applet by the student. When this adequate use has been
reached then a method defined in MOOApplet is called
and this sends notification back to the MOO. The
MOOApplet object, the one within the MOO, then
records on the student object the completion of the task.
As may be inferred from the previous discussion, the
tricky part of this task is determining “adequate use.”
Many applets are simulations, how much simulation is
required for the student to have learned what is needed?
This is where the educational expertise of the instructor is
needed. What typically happens is that the applet has
inserted code which counts actions or notes suitable
changes in state. When sufficient numbers of these occur
the applet signals its approval to the MOO. However, the
student may continue the simulation after this message is
sent.
The MOOApplet object inside the MEP identifies the
applet name that is required, any parameters that may be
needed and generates the needed code to start the applet.
The applet itself may be started in the client itself, within
the right hand pane, or it may be started as a separate
browser window or tab. Figure 2 shows a descendent of
MOOApplet running in a new tab, while Figure 3 shows a
CodeApplet, which is another descendent of the
MOOApplet, running in the client pane. Either
configuration will still communicate with the MOO to
signal completion of the task. This information will then
be recorded on the student object for checking lesson
completion.
The CodeApplet is also a descendent of the MOOApplet,
but is specialized for the original intent of the courses in
the MEP. Since the first courses in the MEP were
programming courses, the CodeApplet was used to
display, explain and trace through snippets of
programming language code. It superseded an earlier
MOO object that performed this action, but without any
graphical assistance.

Figure 3. An example MOOApplet

The CodeApplet will display one or more lines of a
program. These could be copied out of the window and
pasted into an editor, but the normal use is to explain or
run the code. In an explanation, each line is shown with
some explanatory comments. This may discuss the
syntax, semantics, how it is used in the program or any
other information that the instructor would like to convey.
A trace is somewhat more dynamic. It is not the actual
execution of the lines of the program, but a preformatted
trace of how the code would execute. Each line is
executed as it would normally. The line that is executed is
highlighted. Variables may be changed or outputs
displayed. A line in a conditional may be skipped due to
the truth conditions and lines within a loop may be
executed multiple times.
The trace may be a passive exercise, but it may be
interactive as well. The CodeApplet may start the trace of
a line and then ask the student the new value of a variable
that is to be changed by that statement. This forces the
student to enter a value so that they are engaged in the
process. Figure 3 shows a CodeApplet executing.
In Figure 3 one line is highlighted. This is the line that has
just been completed. At the bottom is a dialog box where
the student should enter the value that is to be computed
by the next statement. Partially obscured by this dialog
box is another box containing variables that have been
used, their current and last values. A student can observe
the statement to be executed, the current variable values
and make a prediction of the value about to be computed.

The system also tells the student whether the value they
typed is correct.

Figure 4. A CodeApplet running

The CodeApplet is parameterized by three strings. The
first of these are the lines of code to be displayed. The
second is the explanation for each line. The third is a form
of the simulated trace, which may include the questions
and answers. The student may move forward or backward
through either a trace or explanation. However, a question
on a variable’s value will only be asked the first time
through the line. Either a trace or explanation may be a
requirement of a lesson. The student must complete the
trace or explanation to receive credit.
The RecordedPresentation[3] is another derivation of
MOOApplet. This particular object is somewhat more
general than the CodeApplet, at least in regards to subject
matter. The idea is to deliver to the students the slides of a
Powerpoint® presentation along with recorded audio. The
presentation is contained in compressed archive files as
graphic files and sound files. Any graphic or sound file
that a Java applet may play are acceptable so the original
form of the presentation does not need to be Powerpoint.
It could be any presentation manager that is able to export
its slides to a JPEG or other common format. The audio
may be captured in giving the presentation within a class
environment or may be recorded privately.
A Java applet, which is also a descendent of MOOApplet,
provides the player. It displays each slide and then plays
the audio clip. It notifies the MOO when the presentation
is complete, but only gives this notification if each slide
was displayed and each audio clip is played in its entirety.
A presentation could be lengthy, so the player notifies the
MOO of each completed slide. Should a student be forced
to stop the player before completion and start it again later
it will start at the next slide, not necessarily the beginning.
Figure 4 shows the player and its controls.

3. Experiences

The system has been used as a resource for a face to face
class, often functioning as a virtual textbook. However,
the system has been designed so that students may work

asynchronously with minimal interaction with the
instructor. Students may login and work towards their
current goal at any time. If two or more are logged in at
the same time they can be aware of each other as well as
the instructor. Every room in a MOO is a chat room, so
communication is easy. Each student may find out what
needs to be done next, receive individual assignments and
browse through the exhibits at their own pace. There is no
requirement that a class of students needs to progress at
the same rate.

Figure 5. A RecordedPresentation.

There is a provision for local email within the MOO, but
normal email is generally preferred. Any instructor with
online courses needs to provide a quick response to email
questions, so this is the usual communication method for
fully online students.
Unlike, Blackboard[4] or other Course or Learning
Management Systems there is no means to load a
substantial amount of material quickly and easily. Instead
the creation of content is comparable with the writing of
text book. Creating material also requires some
knowledge of the MOO paradigm. It is not just writing
the material but also arranging it into the separate
exhibits.
The RecordedPresentation is the most recent addition to
the system and has become the means to rapid content
development. Many classroom instructors have
presentations that may be quickly converted into a
RecordedPresentation object. This allows a lesson to be
filled with content quickly. At a later time text-based
exhibits may be created to complement these
presentations.
The RecordedPresentation applet has applicability outside
of the MEP environment as well. It may be used as an
ordinary applet, with the setting of a parameter within the
surrounding HTML. This parameter suppresses
communication with the MOO and the expectation that

parameters that describe the student will be present. Since
there is no recording of the results, there is also no reason
to insist that a clip must be played in its entirety prior to
moving on to the next slide. This facility was used in a
face to face class using the following procedure. The
presentation was given in a classroom and the audio
recorded. Later the audio was separated into clips for use
on each screen. The applet and needed information was
placed on the web. This gave a facility for students to
review the material a second time as well as students who
missed the class to see it for the first time.
The MOO software allows for the development of any
other objects that may be deemed useful. This requires
some programming sophistication as does the creation of
new Java applets. The modification of an existing Java
applet into a MOOApplet is much less complicated and
can usually be handled even by students with just a
semester or two of Java programming.

4. Conclusion

The MEP system has been successfully used at two
different institutions in computer science classes. This is a
historical accident of the author’s departments and
teaching duties. This has certainly influenced the types of
interactive objects, but the system could easily be used in
other areas as well.
The system has been used both as an online course and as
a supplement to a face to face course. Unlike a textbook,
there is some student learning overhead required to use
the system. Motivation is often an issue in online courses
and the MEP system is no exception. The MEP system is
somewhat less structured than other systems, which can
cause problems. Objects such as the lost and aimless
agents have been implemented to counteract such
problems. Determined and motivated students have not
found the overhead a problem.
The interface for students is somewhat easier than for
instructors. The first author invariably uses an older, less
graphical interface for development and the web client for
testing. Other instructors are more likely to use the
graphical interface for both.
The system may be freely distributed. Several MOO
servers have been used and others exist. LambdaMOO[5]
is the most common, but WinMOO[6] has also been used.
Any web server should be acceptable. Apache[7] has been
quite reliable and is used to serve the HTML generated by
a RecordedPresentation, among other things. The original
core for the MOO is due to enCore[8]. However, the core
of MEP has not been brought up to the current level of
that enCore. This is a project that will be investigated
soon. Those interested in obtaining components not
available from the cited web pages should contact the first
author.

Acknowledgements

The MEP project has been supported by National Science
Foundation Grant EIA-0313154 and by ND-EPSCoR
through the FLARE program under EPS-9874802. The
authors would also like to acknowledge the many students
who used the system and gave helpful feedback as well as
those who programmed some of the objects. In addition
the applet authors such as Barry G. Adams who gave us
permission to use and modify their applets.

References
[1] Curt Hill, Brian M. Slator, & Vijayakumar
Shanmugasundaram, ProgrammingLand: A Visualization
Enhanced Hypertextbook. Proceedings IEE Frontiers In
Education, 2007, Milwaukee, WI, 2007, CD.
[2] P. Curtis, Mudding: Social Phenomena in Text-Based
Virtual Realities. Proceedings of the Conference on
Directions and Implications of Advanced Computing.
1992.
 [3] Curt Hill, Captured Presentations for Online
Learning. Midwest Instructional and Computing
Symposium, Rapid City, SD, 2009, CD.
[4] Blackboard, Teaching and Learning.
http://www.blackboard.com/Teaching-Learning/Learn-
Platform.aspx Date accessed 4 Sept 2009.
[5] Ken Fox, Lambda MOO, MUD Server Software.
http://www.moo.mud.org/ Date accessed 3 Sept 2009.
[6] Chris Unkel, WinMOO Frequently asked questions.
http://www.stanford.edu/~cunkel/WinMOO/ Date
accessed 3 Sept 2009.
[7] Apache HTTP SERVER PROJECT.
http://httpd.apache.org / Date accessed 3 Sept 2009.
[8] enCore Open Source MOO Project.
http://sourceforge.net/projects/encore/ Date accessed 4
Sept 2009.

http://www.blackboard.com/Teaching-Learning/Learn-Platform.aspx
http://www.blackboard.com/Teaching-Learning/Learn-Platform.aspx
http://www.moo.mud.org/
http://www.stanford.edu/%7Ecunkel/WinMOO/
http://sourceforge.net/projects/encore/

	ABSTRACT
	KEY WORDS

